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Abstract 
 

Understanding the quality of failure rate data is vital to successful application of SIS, as 
emphasized in the latest IEC 61511 standard, including quantifying the relevant 
uncertainties of the inputs and communicating the confidence metrics in SIL verification 
calculations.  This paper discusses the application of Bayesian credibility intervals to 
determining prior use failure rates for components in SIS service.  This approach compares 
favorably to traditional frequentist approaches because it can incorporate diverse types of 
prior knowledge.  Guidelines for developing Bayesian prior distributions are given, 
including practical examples of prior distributions based on industry data and a 
demonstration of the Bayesian updating process. The concept of hierarchical prior 
distributions is introduced and used to develop a practical model for managing enterprise 
failure rate data. The advantages (and potential pitfalls) of the Bayesian approach are 
discussed, including the inherent handling of uncertainty, as well as the potential to 
significantly reduce the total service hours required for prior use justification.   

 

1 Introduction 

Since the advent of the ANSI / ISA 84 standard in 1996 and the international IEC 61511 
standard in 2004, the concept of performance-based design of Safety Instrumented Systems 
(SIS) and the related concept of probabilistic risk assessment (PRA) have steadily been 
gaining widespread acceptance within the process industries.  However, it is a recurring 
challenge to ensure that the probabilistic calculations in the PRA and SIS design are 
relevant and meaningful.  Too often, these calculations are based on reliability data of 
questionable quality and unknown uncertainties.  Safety Integrity Level (SIL) verifications 
may calculate an average Probability of Failure Demand (PFDavg) to three decimal places 
based on data with uncertainties of two orders of magnitude. 

The standard (herein referring to IEC 61511 unless otherwise noted) recommends a method 
called “prior use” justification, involving a combination of qualitative assessments as well 
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as field failure data analysis, to ensure that reliability data is relevant and that uncertainties 
have been minimized.  Further, the standard requires that procedures be implemented to 
evaluate the SIS performance during operation, i.e. the model needs to be validated against 
reality.  In practice, these requirements have proven quite difficult for end-users of the 
standard to effectively implement. 

In this paper, we will briefly discuss why these requirements are so difficult using 
traditional statistical methods.  We will then explore how Bayesian statistical inference 
offers significant advantages for the analysis of SIS reliability, with an emphasis on 
component prior use justification. 

Bayesian methods have enjoyed widespread use in the fields of nuclear safety, aerospace 
risk management, as well as many other fields.  They have received only limited exposure 
in the process industries, largely due to a perception that the underlying mathematics is 
complex and onerous.  This paper will demonstrate that the present generation of software 
tools makes even advanced Bayesian analysis readily accessible to non-specialists, with 
significant benefits. 

Starting with a simple example of valve reliability, we first demonstrate the construction 
of a prior distribution using generic industry data sources.  Then the concept of Bayesian 
updating is introduced using simple conjugate prior distributions.  Next, the problem of 
non-homogenous populations is addressed using hierarchical Bayesian analysis.  Finally, 
these methods are tied together to show how they can be used to build step-by-step a 
logically coherent, highly efficient system for analyzing and managing SIS (or any other) 
reliability data across a plant or enterprise. 

2 Literature 

This paper concentrates on practical applications and does not attempt to provide an in-
depth introduction to Bayesian statistics.  However, there are many papers, textbooks, and 
handbooks that provide either brief introductions or in-depth treatments of the topic(s).  
The brief literature review below is by no means comprehensive but provides an overview 
of key literature for the interested reader. 

As mentioned above, the nuclear industry has made broad use of Bayesian methods as 
documented in several handbooks [1][2].  In particular, NUREG/CR-6823 provides a useful 
conceptual introduction to Bayesian concepts.  Similarly, NASA offers a handbook [3] for 
using Bayesian methods in risk assessment.  While the NASA handbook is very oriented 
to practical application, it is also very focused on modelling software and does not dwell 
on concepts. 

Many textbooks are available covering Bayesian statistics in general, such as Gelman et al. 
[4].  Of particular interest to readers of this paper would be texts concentrating on Bayesian 
applications in risk assessment and reliability, including Kelly and Smith [5] and Hamada 
et al. [6]. 

Notable examples of process industry applications of Bayesian methods include several 
papers from the SINTEF and NTSU organizations [7][8][9] as well as an application of failure 
rate estimation using Bayes conjugate priors by Shafaghi [10].  Khan et al. [11] have published 
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a comprehensive literature review of research in process safety that includes references to 
other relevant Bayesian literature.  

A version of the hierarchical Bayesian procedure was initially proposed as a “two-stage” 
procedure by Kaplan [12], although the procedure format is quite different since it preceded 
the widespread availability of computerized Bayesian algorithms.  More modern 
treatments of hierarchical Bayes are covered by Pӧrn [13], Droguett and Groen [14], and Kelly 
and Curtis [15].  Hierarchical Bayesian models may also be viewed as a special case of a 
Bayesian Belief Networks of which Weber et al. [16] provides a useful overview of recent 
applications. 

As will be discussed later, practical solutions to many Bayesian problems rely on numerical 
solutions using the Markov Chain Monte Carlo (MCMC) technique implemented using 
various software algorithms.  Several software packages are available for this analysis, but 
we have chosen to use the free JAGS software within the popular free R / RStudio statistics 
software.  There are a wide variety of free resources available online related to R and JAGS.  
There is also a notable textbook by Krushke [17] that provides many example models using 
R and JAGS. 

3 Background and Motivation 

3.1 Data quality in IEC 61511 

Consistently, one of the major challenges of implementing PRA and performance-based 
SIS has been finding applicable failure data for different process industry applications.  The 
IEC 61511 standard itself notes that the lack of high quality reliability data reflective of 
the operating environment has been a significant shortcoming of PRA and SIS probabilistic 
calculations [18]. 

To fill this gap, various sources of reliability data have been made available, including SIL 
certifications from various providers, Reliability Data Collection Projects, Reliability 
Handbooks, etc. 

However, these resources arguably do not fully meet the intent of the IEC 61511 standard, 
which requires that: 

“[reliability data] shall be credible, traceable, documented, justified 
and shall be based on field feedback from similar devices used in a 

similar operating environment.” 

and further: 

“[data] uncertainties shall be assessed and taken into account when 
calculating the failure measure.” [18] 

Many of the above data sources are based on generic devices (i.e. not model specific) or 
generic process services, or both.  Only a few of them explicitly provide estimates of the 
uncertainty in their data, but even that may be suspect since it is likely aggregated based 
on generic devices, generic service, or both. 
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3.2 Static vs. Dynamic Approaches to SIL Verification 

As will be discussed later in the paper, the lack of information related to the quality and 
uncertainty of generic industry reliability data makes it difficult to effectively monitor 
whether the actual performance of the SIS is consistent with the reliability parameters 
assumed during the design.  This difficulty has resulted in what I refer to as a static 
approach to SIL verification, as shown in Figure 1 below. 

 

 

Figure 1.  Static Approach to SIL Verification 

Figure 1 shows what is essentially “open loop control” of SIS performance.  The system is 
originally modelled and designed using static inputs to a static SIL verification model.  
Reliability data may be monitored and gathered on the operations phase, but only ad hoc 
methods are available to determine bad actors on a case-by-case basis. 

What the standard actually recommends is a dynamic approach where the performance of 
the SIS is monitored and evaluated versus the design assumptions.  The design assumptions 
should be updated based on actual performance (in our case, using Bayesian inference), 
leading to a dynamic approach to SIL verification, as shown in Figure 2 below. 

 

 

Figure 2.  Dynamic (Bayesian) Approach to SIL Verification 

As will be demonstrated in this paper, the dynamic Bayesian approach inherently provides 
“closed loop” evaluation of performance and also addresses all of the data quality 
requirements of the standard, namely: 

 Real-word data based on field feedback 
 Credible, traceable, documented data 
 Uncertainties assessed 
 Performance monitored 

The Bayesian framework offers several advantages over traditional frequentist methods, 
but the most important advantage is feasibility.  Traditional methods are often just not 
feasible for SIS analysis, as briefly discussed next. 
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3.3 Difficulties of the Frequentist Approach 

The core limitation of traditional frequentist methods versus Bayesian methods is that 
frequentist methods typically do not consider prior knowledge.  They make the implicit 
assumption that prior to taking a sample, all possible outcomes are equally likely.  This 
concept is best illustrated with an example. 

Example question: We have several valves in similar service. We have prior use data for 
these valves where we have experienced one failure in 871,620 service hours (100 service 
years). What failure rate should we use in our SIL calculations? 

The point estimate for the failure rate is simply: 

መߣ  ൌ ଵ	௙௔௜௟௨௥௘

଼଻ଵ,଺ଶ଴	௛௥
ൌ 1.15 ൈ 10ି଺	/݄ݎ ൌ ଵ

ଵ଴଴	௬௥
 (1) 

However, IEC 61511 calls for a 70% upper confidence limit for prior use data.  A 
frequentist approach would have us calculated the 70% confidence limit based on our 
sample data using the χ2 distribution with 4 degrees of freedom. 

%଻଴ߣ  ൌ
ఞళబ%,ర
మ

ଶൈ଼଻ଵ଺ଶ଴
ൌ ସ.଼଼

ଵ଻ସଷଶସ଴
ൌ 2.78 ൈ 10ି଺/݄(2) ݎ 

Note that this result is 2.8x times higher than the point estimate, even with 100 service 
years of sample data.  This result begs the question; how many years of sample data are 
required to have 70% confidence the failure rate is less than 1/100 yr (i.e. the point 
estimate)?  

 ܶ ൌ
ఞళబ%,ర
మ

ଶൈఒ෡
ൌ ସ.଼଼

଴.଴ଶ
ൌ  (3) ݎݕ	244

This result demonstrates the fundamental issue with using frequentist methods for SIS 
performance analysis.  It simply requires too much data to build the required confidence 
because there is no incorporation of prior knowledge. 

To drive home this point, a similar frequentist analysis for an entire Safety Instrumented 
Function (SIF) indicates that at least 120 successful tests (or demands) are required to 
achieve 70% confidence that SIL 2 performance (i.e. PFDavg < 0.01) has been achieved.  
This amount of testing is clearly beyond the lifetime of a single SIF and is probably 
infeasible for all but the largest populations of identical SIFs. 

The preceding section has attempted to frame the problem.  The remainder of the paper 
will describe the Bayesian analysis process and develop several examples illustrating how 
the process addresses the issues outlined above. 

 

4 A Simple Bayesian Approach with Conjugate Priors 

The Bayesian updating process is quite straightforward, but Bayes theorem relates 
conditional probabilities and can be generally written as: 

 ܲሺܤ|ܣሻ ൌ ௉ሺ஻|஺ሻൈ௉ሺ஺ሻ

௉ሺ஻ሻ
ൌ ௉ሺ஻|஺ሻൈ௉ሺ஺ሻ

௉ሺ୅|୆ሻൈ௉ሺ஺ሻା௉ሺ஻|஺̅ሻൈ௉ሺ஺̅ሻ
 (4) 
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The above equation (4) can be re-written for continuous probability distributions as: 

 ܲሺܤ|ܣሻ ൌ ௉ሺ஻|஺ሻൈ௉ሺ஺ሻ

׬ ௉ሺ୆|୅ሻൈ௉ሺ஺ሻ
ಮ
షಮ ௗ஺

 (5) 

We are interested in the probability that a failure rate (λ) is a certain value conditional on 
some observable evidence (E), such as failures observed over some time period.  
Substituting into equation (5) yields: 

 ܲሺܧ|ߣሻ ൌ ௉ሺா|ఒሻൈ௉ሺఒሻ

௉ሺாሻ
ൌ ௉ሺா|ఒሻൈ௉ሺఒሻ

׬ ௉ሺ୉|஛ሻൈ௉ሺఒሻ
ಮ
బ ௗఒ

 (6) 

The following terminology is commonly used to break down the equation: 

 P(λ)  Prior Distribution – represents prior knowledge about the failure rate λ 
 PሺE|λሻ Likelihood – the likelihood of observing the evidence given λ 
 P(E) Marginal Likelihood - likelihood of observing the evidence 

conditioned over all values of λ 
 P(λ|E) Posterior Distribution – updated knowledge of λ based on the evidence 

Equation (6) is the form that will be used for the initial analysis, but first the Likelihood 
and Prior Distribution must be defined. 

4.1 Likelihood 

SIL calculations per IEC 61511 are typically based on the exponential distribution, which 
is a special case (i.e. where x=0) of the more general Poisson distribution.  Given a constant 
failure rate (λ), the Poisson distribution gives the probability of failures (x) per time period 
(t), as shown below. 

 ܲሺx, t|λሻ ൌ eି஛୲ ሺఒ௧ሻ
ೣ

௫!
 (7) 

In the completed model, the variables x and t will take the place of the evidence (E) in 
equation (6). 

4.2 Prior Distribution 

The prior distribution represents a quantification of our prior knowledge about the failure 
rate (λ).  Prior knowledge may come in many forms, including but not limited to: 

 Industry data 
 Expert opinion 
 Testing 
 Engineering analysis (e.g. FMEDA) 

There are many techniques and considerations when selection a prior distribution.  For 
purposes of this paper, our criteria include simplicity and mathematical tractability.  For 
these reasons, a Gamma distribution was chosen as the prior distribution.  The Gamma 
distribution is a “conjugate prior” of the Poisson likelihood function which enables 
equation 6 to be solved analytically and elegantly, as will be show below. 

The Gamma distribution for the failure rate (λ) can be written as a function of a scale 
parameter (α) and a rate parameter (β): 
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 ܲሺλ|α, βሻ ൌ ఉഀఒഀషభ௘షഁഊ

୻ሺఈሻ
 (8) 

݊ܽ݁ܯ  ൌ ሺλሻܧ	 ൌ ఈ

ఉ
 (8a) 

݁ܿ݊ܽ݅ݎܸܽ  ൌ ሺλሻݎܸܽ	 ൌ ఈ

ఉమ
 (8b) 

The task of selecting the prior becomes selecting values for α and β, which will be called 
α0 and β0.  To make this selection, data for valve failure rates was gathered from a variety 
of industry data sources, as shown in Table 1 below. 

 

Table 1: Industry Failure Rate Data for Valves 

 

Using the data in Table 1 and the relations in equations (8a) and (8b), a Gamma distribution 
can easily be fit that represents our belief about the range of probable failure rates based 
on available industry data.  Our subjective criteria are that the mean match the industry 
data mean and that all of the industry data falls within a 90% confidence interval.  The 
resulting Gamma prior distribution has parameters: 

	 ଴ߙ ൌ 0.9	 (9a) 

଴ߚ  ൌ 441,000	 (9b)	

The same approach may be employed to build prior distributions for other common SIS 
equipment types.  For information, Table 2 provides a summary of other proposed prior 
distributions. 

Low Mean High

Website 8.2E‐07 ‐‐ 2.3E‐06

Certificate ‐‐ 9.0E‐07 ‐‐

Book 1.1E‐06 ‐‐ 4.6E‐06

Certificate 1.3E‐06

Certificate ‐‐ 1.5E‐06 ‐‐

Handbook 1.3E‐07 1.9E‐06 5.4E‐06

Report ‐‐ 2.5E‐06 ‐‐

Average 2.0E‐06

Minimum 1.3E‐07

Maximum 5.4E‐06

Failure Rate hr
‐1
 (λDU)

Source Type
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Table 2: Other Prior Distributions 

 

Figure 3 shows the resulting prior distribution plotted with the average, minimum, and 
maximum of the industry data.  The cumulative distribution is shown for clarity. 

 

 

Figure 3: Prior Distribution for Valve Failure Rate () 

4.3 Bayesian Updating Process 

Now that the likelihood function and the prior distribution have been defined, we can return 
to equation (6) and begin the updating process.  Substituting equations (7) and (8) into 
equation (6) yields the following: 

	 ܲሺߙ|ߣ, ,ߚ ,ݔ ሻݐ ൌ
ሺഊ೟ሻೣ

ೣ!
௘షഊ೟

ഁబ
ഀబ

೨ሺഀబሻ
ఒഀబషభ௘షഁబഊ

׬
ሺഊ೟ሻೣ

ೣ!
௘షഊ೟

ഁబ
ഀబ

೨ሺഀబሻ
ఒഀబషభ௘షഁబഊ

ಮ
బ ௗఒ

	 (10)	

Despite the appearance of complexity, this equation can actually be integrated and solved 
analytically. The earlier choice of a Poisson likelihood and a conjugate Gamma prior yields 
an elegant solution, as follows: 

	 ܲሺߙ|ߣ, ,ߚ ,ݔ ሻݐ ൌ
ఉು
ഀು

௰ሺఈುሻ
	ఈುିଵ݁ିఉುఒߣ (11)	
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where 	 ௉ߙ ൌ ଴ߙ ൅ 	ݔ (11a)	

and 	 ௉ߚ ൌ ଴ߚ ൅ 	ݐ (11b) 

	

Note that the posterior distribution in equation (11) is also a Gamma distribution like the 
prior distribution in (8), but the parameters have been “updated” with the failures (x) and 
time (t) data from the evidence.  This property conveniently allows us to cyclically repeat 
the updating process each time there is new evidence to be incorporated.  Each cycle, the 
current posterior distribution becomes the prior for the next cycle.  This Bayesian updating 
process is illustrated in Figure 4 below. 

 

Figure 4: Cyclical Bayesian Updating Process 

4.4 Example One-Stage Bayesian Updating 

Recall from the earlier example question that for a certain set of valves, a plant had 
experienced one failure in 871,620 service hours (100 service years).  We can now apply 
the Bayesian updating process to this data.  Using equations (11a) and (11b) and the prior 
distribution parameters in (9a) and (9b) yields: 

 	 ௉ߙ ൌ ଴ߙ ൅ ݔ ൌ 0.8 ൅ 1 ൌ 1.8	 (12a)	

		 ௉ߚ ൌ ଴ߚ ൅ ݐ ൌ 441,000 ൅ 871,620 ൌ 1,312,620	 (12b)	

The prior and posterior distributions from this updating cycle are shown in Figure 5 below.  

 

Figure 5: Example Prior and Posterior Distributions 
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Note that the new evidence causes the posterior to be narrower than the prior (i.e. more 
volume of evidence decreases uncertainty) and the posterior shifts slightly lower because 
the new evidence suggests a lower failure rate. 

The upper 70% credibility limit (as per IEC 61511 prior use requirements) may be directly 
calculated based on the quantiles of the new posterior distribution 

 	 %଻଴ߣ ൌ 1.68	 ൈ 10ି଺	 (13) 

Note that this value is 40% lower than the earlier frequentist result due to the impact of the 
prior industry knowledge captured in the prior distribution. In this case and potentially 
many others, the simple Bayesian updating process substantially reduced the number of 
service years required to justify lower prior use-based failure rates. 

5 Hierarchical Bayes 

The simple updating process outlined above makes the important assumption that the 
evidence, and thus the failure rate, is from a homogenous population.  In other words, the 
distribution will eventually converge to an underlying “true” failure rate once sufficient 
evidence is incorporated (i.e. as t  ).  This assumption is often not entirely true in 
practice, expect perhaps for very small populations. 

Instead of a homogenous population (i.e. the same device in the same service), what if an 
analyst is presented with only similar devices in similar services?  Assuming these are 
homogenous populations and using the Bayesian updating process above may lead to 
overly-optimistic results because it ignores the underlying variability in the sub-
populations. 

One solution to this problem is to only use small, homogenous populations in the analysis. 
However, this does not address the “sparse data” problem outlined above.  Intuitively, an 
ideal approach would allow us to incorporate the imperfect information coming from these 
similar services and use them to improve our knowledge of other similar services. 

The Bayesian framework can address this problem, but the simple single-stage model 
above needs to be expanded to what was original called a two-stage model but is now more 
commonly known as Hierarchical Bayes.  

5.1 Expanding the Model to Non-Homogenous Data 

Recall that equation (6) gave a general form of Bayes theorem relating the evidence (E) 
and failure rate (): 

	 ܲሺܧ|ߣሻ ൌ ௉ሺா|ఒሻൈ௉ሺఒሻ

௉ሺாሻ
ൌ ௉ሺா|ఒሻൈ௉ሺఒሻ

׬ ௉ሺா|ఒሻൈ௉ሺఒሻ
ಮ
బ ௗఒ

	 (6)	

This equation may be expanded to incorporate multiple groups of evidence (e.g. 
E1,E2,E3,…) and failure rates (1,2,3,…) corresponding to multiple sub-populations. We 
also incorporate the fact that the distribution of failure rates (i) is dependent on the joint 
distribution of the gamma parameters (, ). 

Others cover this derivation in detail [14] [15], so only the two key results are provided here: 
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	 ܲ൫ߙ, ௜ሻ௜ୀଵ,…,ே൯ܧหሺߚ ൌ
௉ሺሺா೔ሻ೔సభ,…,ಿ|ఈ,ఉሻൈ௉ሺఈ,ఉሻ

׬ ׬ ௉ሺሺா೔ሻ೔సభ,…,ಿ|ఈ,ఉሻൈ௉ሺఈ,ఉሻഁ ௗఈ ௗఉഀ

	 (14)	

Note that the  and  parameters are now variables that can take on different values for 
different sub-populations and have an associated probability distribution.  Equation (14) 
allows these parameters to be updated based on new evidence.  Also note that this equation 
can generally not be solved analytically, so numerical methods will be employed.  Both of 
these topics are discussed in the proceeding sections. 

The other key result is the definition of an expected distribution for the failure rate () 
which incorporates all available evidence from the non-homogenous population.   

	 ܲ൫ߣหሺܧ௜ሻ௜ୀଵ,…,ே൯ ൌ ׬ ׬ ܲሺߙ, ௜ሻ௜ୀଵ,…,ேሻܧሺ|ߚ ൈ ܲሺߙ|ߣ, ሻఉߚ ߙ݀ ఈߚ݀ 	 (15)	

The expected distribution includes the variability between the sub-populations, so no 
amount of evidence would make that uncertainty completely go away.  In other words, 
although the devices or services are similar, there may be inherent differences that do not 
go away with time.  This allowance for population variability addresses the issue of over-
optimism resulting from the previous assumption of homogenous data. 

It is helpful to illustrate the new model using a hierarchical diagram, as shown in Figure 6 
below. 

 

Figure 6: Hierarchical Bayesian Model for Failure Rates 

The arrows in the hierarchy indicate probabilistic dependencies, but it is important to 
realize that inference is bidirectional, so the evidence (xi, ti) at the bottom is used to update 
upward in the hierarchy. 

5.2 Quantifying Population Uncertainty with Hyperpriors 

In the single-stage model, the prior distribution parameters (,) were selected as constants 
based on the available industry data.  In the hierarchical model, the uncertainty in these 
parameters is acknowledged and captured in a prior distribution.  When a prior distribution 
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is placed on model parameters that have no direct physical meaning, they are commonly 
called hyperpriors. 

Industry data does not provide much information to inform our choice of the hyperprior 
distributions.  General guidelines used for this paper were: 

 The mean of the new distribution should match the constant parameters (0,0) 
 The variance of P(|,) should match the original prior P(|0,0) 
 The prior distributions should be diffuse to reflect the lack of knowledge 

Since numerical methods will be employed, there is no need to consider conjugate prior 
relationships.  Based on these rules of thumb, simple Uniform distributions were chosen 
for  and  as follows: 

	 ,ሺ0.10݉ݎ݋݂ܷ݅݊	~	ߙ 0.90ሻ	 (16a)	

		 	ሺ220000,960000ሻ݉ݎ݋݂ܷ݅݊	~	ߚ		 (16b)	

The literature provides additional guidance and highlights potential problems with 
technical aspects of choosing hyperpriors [15], but we omit those considerations for clarity. 

5.3 Markov Chain Monte Carlo 

The complete model is now defined such that equation (15) can be used to calculate the 
expected distribution of the failure rate ().  However, as noted above, the problem cannot 
be solved analytically and requires numeric methods. 

The technique for solving this type of model is called Markov Chain Monte Carlo 
(MCMC).  A complete discussion of MCMC is beyond the scope of this paper, but the 
topic is well covered elsewhere. [4][17]  MCMC generally involves taking large numbers of 
random samples from the different distributions in the model, which ultimately allows the 
user to sample from the posterior distribution.  Various efficient algorithms are available 
for MCMC simulation, and several free software packages are available.  For this study, 
the popular free MCMC software JAGS was used running inside the popular statistics 
software R. 

The code for implementing the JAGS model in R is shown in Figure 7 below.  The code 
basically consists of three steps: 

1. Load necessary libraries and load the failure data for different units from a file 
2. Setup the JAGS model based on Figure 6 and including the hyperpriors (14a/b) 
3. Run the JAGS model for the specified number of sampling iterations (30,000) 
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Figure 7: R/JAGS Code for Hierarchical Bayesian Model 

5.4 Example Hierarchical Bayesian Updating 

With the model built and coded, all that remains is to update the model with actual field 
data (i.e. evidence).  To continue with the valve example, sample data has been collected 
from several other units that are believed to represent similar (but not identical) valves in 
similar (but not identical) services.  Table 3 below shows the collected data, with Unit 1 
representing the data discussed in the previous example. 

 

Table 3: Sample Data from Non-Homogenous Units 
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Running the model in R/JAGS using the data in Table 3 yields posterior distributions for 
the failure rate (i) of each unit as well as the posterior hyperparameters (, ) for the 
overall population.  The results are shown in Figure 8(a-d) below. 

 
(a) Population Variability (b) Prior vs. Posterior 

 

 
(c) Alpha Hyperparameter (d) Beta Hyperparameter 

 

Figure 8: Results of Hierarchical Bayesian Model 

6 Discussion 

Reviewing the results in Figure 8, note that although significant variability exists among 
the units (8a), the posterior expected distribution for the overall population did not change 
much from the prior (8b).  The posterior distribution is only slightly narrower than the 
prior, indicating that the small number and the large variance of the other units limited the 
“strength” of the new evidence. 

Examining the behavior of the hyperparameters in (8c) and (8d), the posterior distributions 
are narrower than the priors, indicating that the new data has updated our very diffuse 
priors.  However, the hyperpriors are still fairly diffuse.  Additional data for either these 
units or new units will be required to further reduce uncertainty. 



GCPS 2018 
________________________________________________________________________ 

Although the small data set in this example did not produce particularly startling results, 
the key point is that the Hierarchical Bayesian framework positions us to incorporate all 
future data from all possible units.  We will consider next a hypothetical example of how 
this framework could be deployed across an enterprise. 

6.1 An Enterprise Hierarchy of Prior Use Distributions 

Consider an example of a typical large chemical or refining enterprise.  There would 
potentially be multiple plants, each with dozens of process units, each unit with many 
pieces of equipment, and all with many different instrument and valve services.  Many of 
these plants, units, equipment, services have similarities, but they are not the same (i.e. 
they are not homogenous). 

Because the hierarchical Bayes framework makes no assumptions about homogeneity, it 
creates an ideal framework for grouping and analyzing subjectively similar equipment.  
These groupings may be as simple or as complex as required to meet the objectives of the 
analysis.  To illustrate this point, two example hierarchies are shown in Figure 9a and 9b 
below 

 

Figure 9a: Complex Hierarchy Based on Refinery Unit / Service 

 

 

Figure 9b: Simple Hierarchy Based on Service Class 
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It is no coincidence that these diagrams look similar to the model in Figure 6.  The 
subjective groupings in Figures 9a/b would be implemented using the same kind of models 
illustrated earlier. 

The choice of grouping can depend on several factors, including but not limited to: 

 The volume of data available (i.e. less data  more grouping) 
 The resources available for data analysis 
 How the data will be used (i.e. specific goals such as a prior use justification) 

Note that the choice of analysis framework is by no means set in stone.  As long as the 
original data is maintained, the analysis can always be repeated under a different 
framework as requirements and capabilities change.  For example, a simple hierarchy can 
provide meaningful results quickly, then be modified after a larger volume of data has been 
accumulated. 

6.2 Toward Dynamic SIL Verification 

As already discussed, the process of updating with new evidence will lead progressively to 
lower uncertainty and narrower posterior distributions.  The posterior credibility interval 
can be used as part of an IEC 61511 prior use justification, but the analysis does not need 
to end there.  The updated failure rate distributions may be used to periodically re-evaluate 
SIS performance, which may lead to one or more of: 

 Procedural changes to eliminate systematic failure mechanisms 
 Decreased proof test intervals 
 Design changes to replace poor performers or add fault tolerance. 

In other literature, Hauge et al [7] propose a method that combines Bayesian updating with 
elements of SPC concepts to monitor performance and take corrective actions.  The author 
of the present paper proposed a simple method for performing and updating SIL 
calculations using Monte Carlo simulation. [19] 

The framework and techniques for dynamic SIL verification are in place, but the lack of 
commercial tools has so far kept them from enjoying widespread application outside of 
academia. 

7 Conclusions 

The international Safety Instrumented Systems standard IEC 61511 calls for using credible, 
traceable field failure rate data in SIL verification and requires that actual performance in 
operation be monitored versus design assumptions.  These requirements have proven 
difficult for end users in part because of the large amount of sample data required for 
traditional frequentist methods. 

The proposed Bayesian framework addresses the requirements by providing a cyclical 
updating process that allows industry knowledge about failure rates to be incorporated in a 
prior distribution and cyclical updated with new data as it becomes available.  Even a 
simple single-stage framework is demonstrated to reduce data requirements by 40% by 
leveraging this prior knowledge. 
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The hierarchical Bayes framework expands on the single-stage model and allows data from 
other similar equipment to be leveraged in the updating process.  This more complex model 
closes the loop on SIS performance by leveraging all available enterprise data in the 
updating process.  Despite the complex mathematics involved, software tools using 
Markov Chain Monte Carlo (MCMC) algorithms make it practical to solve and update 
these models in seconds. 

The hierarchical Bayes framework can be implemented step-by-step as part of an enterprise 
hierarchical grouping of equipment types.  The structure and complexity of the hierarchy 
may depend on several factors, but the hierarchy may grow or be modified as requirements 
change.  The Bayesian methodology provides a flexible, coherent framework for managing 
failure rate data in any enterprise. 
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